Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Inorg Chem ; 63(15): 6972-6979, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38567571

RESUMO

Single-crystal membranes (SCMs) show great promise in the fields of sensors, light-emitting diodes, and photodetection. However, the growth of a large-area single-crystal membranes is challenging. We report a new organic-inorganic SCMs [HCMA]2CuBr4 (HCMA = cyclohexanemethylamine) crystallized at the gas-liquid interface. It also has low-temperature ferromagnetic order, high-temperature dielectric anomalies, and narrow band gap indirect semiconductor properties. Specifically, the reversible phase transition of the compound occurs at 350/341 K on cooling/heating and exhibits dielectric anomalies and stable switching performance near the phase transition temperature. The ferromagnetic exchange interaction in the inorganic octahedra and the organic layer enables ferromagnetic ordering at low-temperature 10 K. Finally, the single crystal exhibits an indirect semiconducting property with a narrow band gap of 0.99 eV. Such rich multichannel physical properties make it a potential application in photodetection, information storage and sensors.

2.
Inorg Chem ; 63(16): 7412-7421, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38600810

RESUMO

Nonplanar porphyrins play crucial roles in many biological processes and chemical reactions as catalysts. However, the preparation of artificial nonplanar porphyrins suffers from complicated organic syntheses. Herein, we present a new rare-earth porphyrinic metal-organic framework (RE-PMOF), BUT-233, which is a three-dimensional (3D) framework structure with the flu topology consisting of 4-connected BBCPPP-Ph ligands H4BBCPPP-Ph = 5',5⁗-(10,20-diphenylporphyrin-5,15-diyl)bis([1,1':3',1″-terphenyl]-4,4'' dicarboxylic acid) and 8-connected Eu6 clusters. Noteworthily, the porphyrin cores of the BBCPPP-Ph ligands in BUT-233 are nonplanar with a ruffle-like conformation. In contrast, the porphyrin core in the free ligand H4BBCPPP-Ph is in a nearly ideally planar conformation, as confirmed by its single-crystal structure. BUT-233 is microporous with 6-8 Špores and a Brunauer-Emmett-Teller (BET) surface area of 649 m2/g, as well as high stability in common solvents. The MOF was used as a photocatalyst for the oxidation degradation of a chemical warfare agent model molecule CEES (CEES = 2-chloroethyl ethyl sulfide) under the light-emitting diode (LED) irradiation and an O2 atmosphere at room temperature. CEES was almost completely converted into its nontoxic light-oxidized product CEESO (CEESO = 2-chloroethyl ethyl sulfoxide) in only 5 min with t1/2 = 2 min (t1/2: half-life). Moreover, the toxic deep-oxidized product 2-chloroethyl ethyl sulfone (CEESO2) was not detected. The catalytic activity of BUT-233 was high in comparison with those of some previously reported MOF catalysts. The results of photo/electrochemical property studies suggested that the high catalytic activity of BUT-233 was benefited from the presence of nonplanar porphyrin rings on its pore surface.

3.
J Chem Inf Model ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529913

RESUMO

Along with the development of machine learning, deep learning, and large language models (LLMs) such as GPT-4 (GPT: Generative Pre-Trained Transformer), artificial intelligence (AI) tools have been playing an increasingly important role in chemical and material research to facilitate the material screening and design. Despite the exciting progress of GPT-4 based AI research assistance, open-source LLMs have not gained much attention from the scientific community. This work primarily focused on metal-organic frameworks (MOFs) as a subdomain of chemistry and evaluated six top-rated open-source LLMs with a comprehensive set of tasks including MOFs knowledge, basic chemistry knowledge, in-depth chemistry knowledge, knowledge extraction, database reading, predicting material property, experiment design, computational scripts generation, guiding experiment, data analysis, and paper polishing, which covers the basic units of MOFs research. In general, these LLMs were capable of most of the tasks. Especially, Llama2-7B and ChatGLM2-6B were found to perform particularly well with moderate computational resources. Additionally, the performance of different parameter versions of the same model was compared, which revealed the superior performance of higher parameter versions.

5.
Blood Cancer J ; 14(1): 38, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443358

RESUMO

Multiple myeloma (MM) is a heterogenous plasma cell malignancy, for which the established prognostic models exhibit limitations in capturing the full spectrum of outcome variability. Leveraging single-cell RNA-sequencing data, we developed a novel plasma cell gene signature. We evaluated and validated the associations of the resulting plasma cell malignancy (PBM) score with disease state, progression and clinical outcomes using data from five independent myeloma studies consisting of 2115 samples (1978 MM, 65 monoclonal gammopathy of undetermined significance, 35 smoldering MM, and 37 healthy controls). Overall, a higher PBM score was significantly associated with a more advanced stage within the spectrum of plasma cell dyscrasias (all p < 0.05) and a shorter overall survival in MM (hazard ratio, HR = 1.72; p < 0.001). Notably, the prognostic effect of the PBM score was independent of the International Staging System (ISS) and Revised ISS (R-ISS). The downstream analysis further linked higher PBM scores with the presence of cytogenetic abnormalities, TP53 mutations, and compositional changes in the myeloma tumor immune microenvironment. Our integrated analyses suggest the PBM score may provide an opportunity for refining risk stratification and guide decisions on therapeutic approaches to MM.


Assuntos
Mieloma Múltiplo , Paraproteinemias , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Plasmócitos , Prognóstico , Análise de Sequência de RNA , Microambiente Tumoral
6.
Adv Sci (Weinh) ; : e2310025, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408136

RESUMO

As a unique subclass of metal-organic frameworks (MOFs), MOFs with open metal site (OMS) are demonstrated efficient gas separation performance through pi complexation with unsaturated hydrocarbons. However, their practical application faces the challenge of humidity that causes structure degradation and completive binding at the OMS. In this work, the effect of linker methylation of a copper MOF (BUT-155) on the C2 H2 /CO2 separation performance under humid condition is evaluated. The water adsorption isotherm, adsorption kinetics, and breakthrough under dry and humid conditions are performed. The BUT-155 with methylated linker exhibits lower water uptake and adsorption kinetics under humid condition (RH = 20%), in comparison with HKUST-1. Therefore, the C2 H2 /CO2 separation performance of BUT-155 is much less affected by water, especially under higher gas flow rate. Moreover, the dynamic C2 H2 /CO2 separation performance of BUT-155 can maintain five breakthrough cycles under humid conditions (RH = 20% and RH = 80%) without obvious performance degradation.

7.
Inorg Chem ; 63(9): 4249-4259, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364203

RESUMO

The emission of volatile organic compounds (VOCs) significantly contributes to air pollution and poses a serious threat to human health. Benzene, one of the most toxic VOCs, is difficult for the human body to metabolize and is classified as a Group 1 carcinogen. The development of efficient adsorbents for removing trace amounts of benzene from ambient air is thus of great importance. In this work, we studied the benzene adsorption properties of four Zr-based metal-organic frameworks (Zr-MOFs) through static volumetric and dynamic breakthrough experiments. Two previously reported Zr-MOFs, BUT-12 and STA-26, were prepared with a tritopic carboxylic acid ligand (H3L1) functionalized with three methyl groups, and STA-26 is a 2-fold interpenetrated network of BUT-12. Two new isoreticular Zr-MOFs, BUT-12-Et and STA-26-Et, were synthesized using a similar ligand, H3L2, where the methyl groups are replaced with ethyl groups. There are mesopores in BUT-12 and BUT-12-Et and micropores in STA-26 and STA-26-Et. The four Zr-MOFs all showed high stability in liquid water and acidic aqueous solutions. The microporous STA-26 and STA-26-Et showed much higher benzene uptakes than mesoporous BUT-12 and BUT-12-Et at room temperature under low pressures. Particularly, the benzene adsorption capacity of STA-26-Et was high up to 2.21 mmol/g at P/P0 = 0.001 (P0 = 12.78 kPa), higher than those of the other three Zr-MOFs and most reported solid adsorbents. Breakthrough experiments confirmed that STA-26-Et could effectively capture trace benzene (10 ppm) from dry air; however, its benzene capture capacity was reduced by 90% under humid conditions (RH = 50%). Coating of the crystals of STA-26-Et with polydimethylsiloxane (PDMS) increased the hydrophobicity of the exterior MOF surfaces, leading to a more than 2-fold improvement in its benzene capture capacity in the breakthrough experiment under humid condition. PDMS coating of STA-26-Et likely slowed down the water adsorption process, and thus, the adsorbent afforded more efficient capture of benzene. This work demonstrates that modifying both the interior and exterior surfaces of MOFs can effectively enhance their performance in capturing trace benzene from ambient air, even under humid conditions. This finding is meaningful for the development of new adsorbents for effective air purification applications.

8.
BJC Rep ; 22024.
Artigo em Inglês | MEDLINE | ID: mdl-38312352

RESUMO

BACKGROUND/OBJECTIVES: Checkpoint inhibitors, which generate durable responses in many cancer patients, have revolutionized cancer immunotherapy. However, their therapeutic efficacy is limited, and immune-related adverse events are severe, especially for monoclonal antibody treatment directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with the B7 proteins CD80 and CD86. Small molecules impairing the CTLA-4/CD80 interaction have been developed; however, they directly target CD80, not CTLA-4. SUBJECTS/METHODS: In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to identify those targeting CTLA-4. We validated the hits molecules with biochemical, biophysical, immunological, and experimental animal assays. RESULTS: The primary hits obtained from the virtual screening were successfully validated in vitro and in vivo. We then optimized lead compounds and obtained inhibitors (inhibitory concentration, 1 micromole) that disrupted the CTLA-4/CD80 interaction without degrading CTLA-4. CONCLUSIONS: Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. Our findings support using AI-based frameworks to design small molecules targeting immune checkpoints for cancer therapy.

9.
Chem Soc Rev ; 53(4): 2056-2098, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38214051

RESUMO

Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.

10.
J Surg Case Rep ; 2023(11): rjad610, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965538

RESUMO

Patients with hepatocellular carcinoma at high risk of recurrence after hepatic resection or local ablation often undergo adjuvant immunotherapy with immune checkpoint inhibitors for 1 year in randomized controlled trials, but the appropriateness of this duration is controversial, especially given the risk of adverse events. Here we report the case of a 52-year-old Chinese man with initially unresectable multinodular recurrent hepatocellular carcinoma who underwent two cycles of transarterial chemoembolization, followed by hepatic resection and 24 months of adjuvant therapy with the PD-1 inhibitor tislelizumab. The patient achieved a recurrence-free survival time of 24 months, but he experienced elevated alpha fetoprotein, Grade 2 hypothyroidism and pruritus while on adjuvant therapy. This case highlights the need to optimize the duration of adjuvant immunotherapy after curative treatment for hepatocellular carcinoma in order to minimize risk of not only recurrence but also adverse events.

11.
Environ Sci Technol ; 57(49): 20962-20973, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008907

RESUMO

As a generally existing component in industrial streams, H2O usually inhibits the catalytic degradation efficiency of volatile organic compounds (VOCs) greatly. Here, we propose a novel strategy that accelerates the H2O dissociation and facilitates positive feedbacks during VOC oxidation by fabricating citric acid (CA)-assisted Pt(K)-Mn2O3/SiO2 (Pt-Mn/KS-xCA). Results reveal that the complexation of carboxyl groups of citric acid with Mn cations leads to the formation of small Mn2O3 (4.1 ± 0.2 nm) and further enhances the Mn-O-Pt interaction (strengthened by the Si-O-Mn interaction), which can transfer more electrons from Pt-Mn/KS-6CA to H2O, thus facilitating its breaking of covalent bonds. It subsequently produces abundant surface hydroxyl groups, improving the adsorption and activation abilities of acetone reactant and ethanol intermediate. Attributing to these, the acetone turnover frequency value of Pt-Mn/KS-6CA is 1.8 times higher than that of Pt-Mn/KS at 160 °C, and this multiple changes to 6.3 times in the presence of H2O. Remarkably, acetone conversion over Pt-Mn/KS-6CA increases by up to 14% in the presence of H2O; but it decreases by up to 26% for Pt-Mn/KS due to its weak dissociation ability and high adsorption capacity toward H2O. This work sheds new insights into the design of highly efficient catalytic materials for VOC degradation under humid conditions.


Assuntos
Compostos Orgânicos Voláteis , Água , Água/química , Acetona , Compostos Orgânicos Voláteis/química , Dióxido de Silício , Ácido Cítrico
12.
Dalton Trans ; 52(33): 11558-11564, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37545469

RESUMO

Zero-dimensional (0D) hybrid metal halides have attracted much attention due to their rich composition, excellent optical stability, large exciton binding energy, etc. Photoelectric switchable multifunctional materials can integrate multiple physical properties (e.g., ferroelectricity, photoluminescence, magnetic, etc.) into one device and are widely used in many fields such as smart switches, sensors, etc. However, multifunctional materials with thermal energy storage, stimulant dielectric response, and light-emitting properties are rarely reported. Here, we synthesized a new organic-inorganic hybrid metal halide single crystal [TEMA]2MnBr4 (1) (TEMA+ = triethylmethylammonium). Compound 1 undergoes a reversible phase transition at a high temperature of 344/316 K, having a large thermal hysteresis of 28 K and exhibits high stability dielectric switching characteristics near the phase transition temperature. The single crystal exhibits green emission at 513 nm under UV excitation, originating from the 4T1g(G) → 6A1g(S) transition of Mn2+ ions. Excitingly, this single crystal's photoluminescence quantum yield (PLQY) is as high as 80.78%. This work provides a strategy for the development of organic-inorganic hybrid optoelectronic multifunctional materials with high-efficient light emission and switchable dielectric properties.

13.
Inorg Chem ; 62(31): 12329-12336, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478416

RESUMO

Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Metal-organic frameworks (MOFs) are a class of promising adsorbents for light hydrocarbon separations. Among them, the so-called "flexible-robust" MOFs combine the advantages of flexibility and rigidity in structure and could show enhanced gas separation selectivity as well as improved gas uptake at low pressure. Interpenetrated MOFs offer a platform to explore the "flexible-robust" feature of MOFs based on their subnetwork displacement in the process of gas adsorption. Herein, we present two hydrolytically stable MOFs (BUT-308 and BUT-309) with interpenetrated structures and fascinating propyne/propylene separation performance. BUT-308 is composed of interpenetrated 2D Cu(BDC-NH2)BPB layers (H2BDC-NH2 = 2-aminobenzene-1,4-dicarboxylic acid; BPB = 1,4-bis(4-pyridyl)benzene), while BUT-309 consists of twofold interpenetrated 3D pillared-layer Cu2(BDC-NH2)2(BPB-CF3) nets (BPB-CF3 = 2-trifluoromethyl-1,4-bis(4-pyridyl)benzene). Gas adsorption measurements showed that BUT-309 was a "flexible-robust" adsorbent with multistep adsorption isotherms for C3H4 rather than C3H6 at a wide temperature range. The guest-dependent pore-opening behavior endows BUT-309 with high potential in the C3H4/C3H6 separation. The C3H4 adsorption measurements of BUT-309 at 273-323 K showed that the lowering of the temperature induced the pore-opening action at lower pressure. Column breakthrough experiments further confirmed the capability of BUT-309 for the efficient removal of C3H4 from a C3H4/C3H6 binary gas, and the C3H6 processing capacity at 273 K (15.7 cm3 g-1) was higher than that at 298 K (35.2 cm3 g-1). This work shows a rare example of "flexible-robust" MOFs and demonstrated its high potential for C3H4/C3H6 separation.

14.
Thromb Res ; 225: 39-46, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948020

RESUMO

The significance of rare germline mutations in transplant-associated thrombotic microangiopathy (TA-TMA) is not well studied. We performed a genetic association study in 100 adult TA-TMA patients vs. 98 post-transplant controls after matching by race, sex, and year. We focused on 5 pathways in complement, von Willebrand factor (VWF) function and related proteins, VWF clearance, ADAMTS13 function and related proteins, and endothelial activation (3641variants in 52 genes). In the primary analysis focused on 189 functional rare variants, no differential variant enrichment was observed in any of the pathways; specifically, 29 % TA-TMA and 33 % controls had at least 1 rare complement mutation. In the secondary analysis focused on 37 rare variants predicted to be pathogenic or likely pathogenic by ClinVar, Complement Database, or REVEL in-silico prediction tool, rare variants in the VWF clearance pathway were found to be significantly associated with TA-TMA (p = 0.008). On the gene level, LRP1 was the only one with significantly increased variants in TA-TMA in both analyses (p = 0.025 and 0.015). In conclusion, we did not find a significant association between rare variants in the complement pathway and TA-TMA; however, we discovered a new signal in the VWF clearance pathway driven by the gene LRP1 among likely pathogenic variants.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Microangiopatias Trombóticas , Adulto , Humanos , Mutação em Linhagem Germinativa , Fator de von Willebrand/genética , Proteínas do Sistema Complemento , Microangiopatias Trombóticas/genética , Células Germinativas/metabolismo
15.
Sci Adv ; 9(13): eadg4923, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989363

RESUMO

With the fast-growing accumulation of electronic waste and rising demand for rare metals, it is compelling to develop technologies that can promotionally recover targeted metals, like gold, from waste, a process referred to as urban mining. Thus, there is increasing interest in the design of materials to achieve rapid, selective gold capture while maintaining high adsorption capacity, especially in complex aqueous-based matrices. Here, a highly porous metal-organic framework (MOF)-polymer composite, BUT-33-poly(para-phenylenediamine) (PpPD), is assessed for gold extraction from several matrices including river water, seawater, and leaching solutions from CPUs. BUT-33-PpPD exhibits a record-breaking extraction rate, with high Au3+ removal efficiency (>99%) within seconds (less than 45 s), a competitive capacity (1600 mg/g), high selectivity, long-term stability, and recycling ability. Furthermore, the high porosity and redox adsorption mechanism were shown to be underlying reasons for the material's excellent performance. Given the accumulation of recovered metallic gold nanoparticles inside, the material was also efficiently applied as a catalyst.

16.
Dalton Trans ; 52(9): 2799-2803, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36752146

RESUMO

As promising functional materials, organic-inorganic hybrid metal halide perovskites have attracted significant interest because of their excellent photovoltaic performance. However, although considerable efforts have been made, three-dimensional (3D) metal halide perovskites beyond lead halides have been rarely reported. Herein, a new 3D organic-inorganic hybrid ferroelectric material (Me-Hdabco)CsI3 (1, Me-Hdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane) was synthesized and characterized. 1 underwent a ferroelectric to paraelectric phase transition at Tc = 441 K, which was investigated by differential scanning calorimetry (DSC), dielectric measurements, and variable temperature structural analyses. Moreover, 1 shows a clear ferroelectric domain switching recorded by piezoelectric force microscopy. More interestingly, the pristine colorless crystal of 1 has no photoluminescence properties, while 10% Sn(II):(Me-Hdabco)CsI3 shows intense photoluminescence with a quantum yield of 8.90% under UV excitation. This finding will open up a new avenue to probe organic-inorganic hybrid multifunctional materials integrated ferroelectric and photoluminescence.

18.
ACS Appl Mater Interfaces ; 15(4): 5357-5364, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689406

RESUMO

Expanding the structural diversity of porphyrinic metal-organic frameworks (PMOFs) is essential to develop functional materials with novel properties or enhanced performance in different applications. Herein, we establish a strategy to construct rare-earth (RE) PMOFs with unprecedented topology via rational functionalization of porphyrinic ligands. By introducing phenyl/pyridyl groups to the meso-positions of the porphyrin core, the symmetries and connectivities of the ligands are tuned, and three RE-PMOFs (BUT-224/-225/-226) with new topologies are successfully obtained. In addition, BUT-225(Co), with both the Lewis basic and acidic sites, exhibits enhanced CO2 uptake and higher catalytic activity for the cycloaddition of CO2 and epoxides under mild conditions. This work reveals that the RE-PMOFs with novel topologies can be rationally designed and constructed through ligand functionalization, which provides insights into the construction of tailored PMOFs for various applications.

19.
ACS Appl Mater Interfaces ; 15(3): 4208-4215, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625524

RESUMO

Metal-organic frameworks (MOFs) have been proven promising in addressing many critical issues related to gas separation and purification. However, it remains a great challenge to optimize the pore environment of MOFs for purification of specific gas mixtures. Herein, we report the rational construction of three isostructural microporous MOFs with the 4,4',4"-tricarboxyltriphenylamine (H3TCA) ligand, unusual hexaprismane Ni6O6 cluster, and functionalized pyrazine pillars [PYZ-x, x = -H (DZU-10), -NH2 (DZU-11), and -OH (DZU-12)], where the building blocks of Ni6O6 clusters and huddled pyrazine pillars are reported in porous MOFs for the first time. These building blocks have enabled the resulting materials to exhibit good chemical stability and variable pore chemistry, which thus contribute to distinct performances toward C2H2/CO2 separation. Both single-component isotherms and dynamic column breakthrough experiments demonstrate that DZU-11 with the PYZ-NH2 pillar outperforms its hydrogen and hydroxy analogues. Density functional theory calculations reveal that the higher C2H2 affinity of DZU-11 over CO2 is attributed to multiple electrostatic interactions between C2H2 and the framework, including strong C≡C···H-N (2.80 Å) interactions. This work highlights the potential of pore environment optimization to construct smart MOF adsorbents for some challenging gas separations.

20.
Inorg Chem ; 62(12): 4762-4769, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36529942

RESUMO

The separation of ethane from ethylene is an important but challenging process in the chemical industry because of their similar physicochemical properties. Generally, the adsorbents for C2H6/C2H4 separation require an appropriate and relatively small aperture. Herein, we report two dynamic pillar-layered metal-organic frameworks (MOFs) BUT-111 and BUT-112 with isomorphic frameworks but different degrees of interpenetration for efficient C2H4 purification. The dynamic behavior makes both the activated MOFs exhibit ultramicropores and reversed order adsorption behavior for C2H6 and C2H4, which could obtain highly purified C2H4 in one step from the C2H6/C2H4 mixture. BUT-111 and BUT-112 could work in a wide temperature range, and with the decrease in temperature, the C2H6/C2H4 selectivity would increase. Moreover, the degree of interpenetration could be well controlled by the synthetic temperature, and the increase in the interpenetration degree of BUT-112 enhanced the C2H4 purification effectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...